0=a^2+10a-156

Simple and best practice solution for 0=a^2+10a-156 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=a^2+10a-156 equation:



0=a^2+10a-156
We move all terms to the left:
0-(a^2+10a-156)=0
We add all the numbers together, and all the variables
-(a^2+10a-156)=0
We get rid of parentheses
-a^2-10a+156=0
We add all the numbers together, and all the variables
-1a^2-10a+156=0
a = -1; b = -10; c = +156;
Δ = b2-4ac
Δ = -102-4·(-1)·156
Δ = 724
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{724}=\sqrt{4*181}=\sqrt{4}*\sqrt{181}=2\sqrt{181}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{181}}{2*-1}=\frac{10-2\sqrt{181}}{-2} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{181}}{2*-1}=\frac{10+2\sqrt{181}}{-2} $

See similar equations:

| f+1/6=3/7= | | (3(2x+1))/5=2x-5 | | (225x*60)+347x=33520 | | -4(-7x-7)=-84 | | X+9=2x+21 | | 5y+6=9y | | 7(2s-5)=-21 | | -8+11x=10x+1 | | 4/5=(x+2)/45 | | 6c+3=1c-12 | | 2+v=-6 | | -488=-89(7x+5) | | 9-3x=54=2x | | 3–45t=16 | | 4/5=x/45+2/45 | | 3–45t=16. | | 6x-10=2(x+6) | | 305x+150(x*50)=34800 | | 34=y/5+10 | | 72/1x=8 | | 6=1/2b | | 4.9x^2+7x-700=0 | | 2(x+2)=3x+8-(x+4) | | (2/3)x+1=-(1/3)x-1 | | 9/10h=81 | | w/3-12=35 | | 1/2x+3x=24-4x | | (9x-5)+(7x-5)=22 | | 31=v/4+12 | | 50=2/3c | | (4x^2-15x+18)=0 | | 7(x-5)=-84 |

Equations solver categories